Factorisation matricielle : lier du texte à des bases de connaissances
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les techniques de désambigation des entités, y compris les modèles NER, Viterbi et GPT, en mettant l'accent sur la conception rapide et l'apprentissage en contexte.
Explore l'inférence des connaissances pour les graphiques, en discutant de la propagation des étiquettes, des objectifs d'optimisation et du comportement probabiliste.
Explore les ontologies populaires et les bases de connaissances telles que WordNet, WikiData, Google Knowledge Graph et Schema.org, ainsi que les ensembles de données ouvertes liées.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.
Explore la représentation des connaissances, l'extraction de l'information et la vision du Web sémantique, en mettant l'accent sur la normalisation, la cartographie et les ontologies dans la structuration des données.
Explore la désambiguïsation des entités, reliant le texte aux bases de connaissances et la prédiction de liens dans les graphiques de connaissances avec des exemples de Wikipedia.