Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Explore la descente de gradient stochastique, couvrant les taux de convergence, l'accélération et les applications pratiques dans les problèmes d'optimisation.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Introduit des bases d'optimisation, couvrant la régression logistique, les dérivés, les fonctions convexes, la descente de gradient et les méthodes de second ordre.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Discute de la descente de gradient stochastique et de son application dans l'optimisation non convexe, en se concentrant sur les taux de convergence et les défis de l'apprentissage automatique.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.