Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la programmation dynamique pour optimiser les processus de prise de décision au fil du temps, en utilisant des exemples concrets tels que l'extraction de pétrole et la négociation d'actions.
Explore les processus stochastiques contrôlés, en se concentrant sur l'analyse, le comportement et l'optimisation, en utilisant la programmation dynamique pour résoudre les problèmes du monde réel.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore la programmation dynamique pour un contrôle optimal, en se concentrant sur la stabilité, la politique stationnaire et les solutions récursives.
Explore le contrôle optimal stochastique, mettant l'accent sur la consommation et l'investissement optimaux, le théorème de représentation de Martingale et le théorème de vérification.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.