Résume les concepts clés dans Solid State Physics II, y compris les structures de bandes, les surfaces de Fermi, l'approximation de fixation serrée et les isolants par rapport aux métaux.
Explore la résistance au contact dans les dispositifs semi-conducteurs, la résistance quantique, la conductance quantifiée, les défis d'injection de spin et les stratégies de réduction de la résistance au contact.
Explore l'ingénierie du magnétisme intrinsèque π-électron dans les nanostructures de carbone, en mettant l'accent sur l'induction du magnétisme dans le graphène et les nanographènes à travers le déséquilibre sublattice et la frustration topologique.
Discute des principes de la mécanique quantique, en se concentrant sur la concentration en porteurs libres et la distribution de Maxwell dans les métaux et les gaz.
Explore les membranes de graphiène dopées en N pour l'échange de protons dans les piles à combustible, en mettant l'accent sur la performance et la fabrication.
Explore la structure des bandes dans diverses dimensions, les effets de confinement quantique, la densité des états et les quantités de Fermi dans les objets 3D.
Explore le dopage électrostatique dans la nanoélectronique à base de carbone, en soulignant l'importance de la faible densité d'états pour de nouveaux concepts de dispositifs.
Présente des phénomènes à l'échelle nanométrique, couvrant la mécanique quantique, les structures atomiques et des exemples de propriétés et de comportements optiques des nanoparticules.
Explore la densité des états dans les dispositifs semi-conducteurs, couvrant le gaz électronique, les bandes d'énergie, la distribution de Fermi-Dirac et les structures de bandes.
Examine la dynamique de transmission et de spin ultrarapide dans les semi-conducteurs 2D et leurs hétérostructures, explorant des réponses optiques uniques et des applications nouvelles.