Machine Learning in Chemistry: Optimisation de la réaction bayésienne
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.
Explore l'application de modèles générateurs profonds dans la découverte de médicaments, en mettant l'accent sur la conception de petites molécules et l'optimisation des structures moléculaires.
Couvre la logistique générale, la justification des cours, les conditions préalables, l'organisation, les crédits, la charge de travail, le classement et le contenu des cours, y compris les renseignements sur les essaims, les stratégies de recherche de nourriture et les phénomènes collectifs.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore l'apprentissage multi-tâches pour l'optimisation accélérée des réactions chimiques, les défis de mise en évidence, les workflows automatisés et les algorithmes d'optimisation.
Explore les systèmes de contrôle moteur, couvrant les algorithmes, l'intégration de capteurs et les applications pratiques en robotique et en automatisation.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore l'optimisation décentralisée dans l'apprentissage automatique, en mettant l'accent sur la robustesse, la confidentialité et l'équité dans l'apprentissage collaboratif.