Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Explore Feedback Equilibrium Rechercher un contrôle robuste dans les systèmes cyberphysiques, en mettant l'accent sur la fiabilité, l'évolutivité et la performance.
Explore l'auto-organisation dans les systèmes naturels et les stratégies de recherche de nourriture des fourmis, y compris les algorithmes Traveling Salesman Problem et Ant Colony Optimization.
Couvre l'intégration de l'apprentissage automatique avec la microscopie à sonde à balayage pour une automatisation et une efficacité améliorées dans les flux de travail scientifiques.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.