Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Explore l'optimisation des requêtes récursives dans les systèmes de bases de données à l'aide de Datalog et semi-rings, en discutant des défis et des solutions dans l'analyse des données.
Couvre l'optimisation non convexe, les problèmes d'apprentissage profond, la descente stochastique des gradients, les méthodes d'adaptation et les architectures réseau neuronales.
Explore l'apprentissage automatique en chimie, se concentrant sur l'optimisation de la réaction bayésienne et le transfert du fardeau expérimental des humains aux machines.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.