Big Data: Meilleures pratiques et lignes directrices
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'importance de la reproductibilité dans la science des données et présente Renku, une plate-forme pour la gestion de projets axés sur les données.
Explore la création de tableaux de bord dans ServiceNow, en mettant l'accent sur les avantages, la transition des pages d'accueil et des concepts importants comme les tâches et les incidents.
Explore l'hydraulique fluviale, la modélisation et l'étalonnage en utilisant une approche semi-distribuée pour des prévisions précises et la gestion des ressources en eau.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Déplacez-vous dans les techniques avancées d'optimisation Spark, en mettant l'accent sur la partition des données, les opérations de shuffle et la gestion de la mémoire.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.