Explore l'approche de distribution quasi-stationnaire dans la modélisation de la dynamique moléculaire, couvrant la dynamique de Langevin, la métastabilité et les modèles cinétiques de Monte Carlo.
Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Couvre un échantillonnage important pour une estimation Monte Carlo efficace des valeurs attendues en utilisant une nouvelle distribution pour réduire la variance.
Explore l'échantillonnage de la dynamique moléculaire, les lois de conservation, les fluctuations d'énergie et divers thermostats utilisés pour les simulations.
Explore la méthode d'échantillonnage GLE non-équilibre pour la modélisation atomistique et discute des thermostats S, du thermostat quantique, des systèmes anharmoniques et des fuites d'énergie à point zéro.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Explore les tendances et les défis de la modélisation de systèmes moléculaires complexes à l'aide d'approches hiérarchiques à plusieurs échelles, couvrant les échelles de durée, les simulations atomistes et les techniques d'appariement des forces.
Explore les algorithmes d'échantillonnage pour les systèmes restreints, en mettant l'accent sur le travail de Benedict Leimkuhler de l'Université d'Édimbourg.