Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Discute de la multiplication matricielle en utilisant des techniques de division et de conquête et introduit l'algorithme de Strassen pour une efficacité améliorée.
Explore les contraintes, l'efficacité et la complexité de l'algèbre linéaire, en mettant l'accent sur la convexité et la complexité du pire des cas dans l'analyse algorithmique.
Introduit la complexité temporelle et l'analyse des algorithmes dans le pire des cas, en extrayant la complexité computationnelle des détails de mise en œuvre.
Introduit la complexité temporelle et l'analyse des algorithmes dans le pire des cas, en extrayant la complexité computationnelle des détails de mise en œuvre.