Explore les propriétés élémentaires des transformées de Fourier, de la convolution, du théorème de Parseval et de la solution d'Alembert de l'équation des ondes en utilisant les transformées de Fourier et la convolution.
Explore Fourier et Laplace se transforment en science des matériaux, en mettant l'accent sur l'interaction lumière-matière, les motifs de diffraction et les propriétés cristallines.
Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Couvre la théorie des méthodes numériques pour l'estimation des fréquences sur les signaux déterministes, y compris la série et la transformation de Fourier, la transformation de Fourier discret et le théorème d'échantillonnage.
Couvre les bases de la transformation de Laplace, les propriétés et les applications des systèmes LTI, y compris la fonction de transfert et la réponse de fréquence.
Explique les bases de la transformation de Fourier et démontre son application à travers des exemples, y compris des fonctions périodiques et des paires transformées de Fourier.