Explore le transfert des principes d'apprentissage humain aux robots, en mettant l'accent sur la manipulation de l'apprentissage des compétences et la planification des tâches.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Étudie les défis liés à l'élaboration de systèmes normatifs de recommandations d'information et les considérations éthiques en matière d'IA, de journalisme et de diversité.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.