Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore les tests de spécification, l'apprentissage automatique, le surajustement, la régularisation, les tests de prédiction et la sélection de variables.
Couvre les problèmes de surajustement, de sélection de modèle, de validation, de validation croisée, de régularisation, de régression du noyau et de représentation des données.