Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explore la factorisation matricielle dans les systèmes de recommandation, couvrant l'optimisation, les mesures d'évaluation et les défis liés à la mise à l'échelle.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore l'optimisation accélérée de l'ordre de jointage GPU dans les grands espaces de recherche, en tirant parti de la topologie graphique pour réduire les frais généraux de calcul.