Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Explore l'amélioration des prédictions d'apprentissage automatique en raffinant les mesures d'erreur et en appliquant des contraintes pour améliorer la précision des prédictions de densité électronique.
Explore l'apprentissage automatique à travers des modèles solvables, couvrant la complexité des échantillons, les réseaux neuronaux et les lacunes de calcul.
Explore les méthodes stochastiques pour les systèmes quantiques, y compris la diagonalisation exacte, les méthodes variationnelles, les réseaux neuronaux et l'apprentissage automatique.