Couvre la structure d'un cours de neurosciences, en se concentrant sur la membrane cellulaire, les canaux ioniques, la transmission synaptique et la fonction cérébrale.
Explore l'extraction de texte de données à longue queue dans les neurosciences et la connectivité cérébrale, y compris la reconnaissance d'entités nommées, l'extraction de la concentration de protéines et la comparaison des matrices de connectivité.
Explore la vue d'ensemble, la justification et les stratégies de la neuroscience de simulation, en mettant l'accent sur les défis de la reconstruction et de la simulation du cerveau.
Explore les progrès de l'IRMf de la moelle épinière à 7 Tesla, en soulignant son importance dans la compréhension des pathologies du système nerveux central.
Explore les modules du réseau cérébral et la structure communautaire, y compris le connectome fonctionnel modulaire naturel, la modularité du réseau et les algorithmes de détection communautaire.
S'oriente vers l'analyse de la dynamique cérébrale et des réseaux à l'aide de techniques de neuroimagerie avancées et de méthodes de traitement des signaux.
Discute des définitions et de l'évaluation des niveaux de conscience par le biais de neuroimagerie et de réseaux cérébraux, en mettant l'accent sur la connICA pour cartographier les traits fonctionnels du connectome.
Explore les interactions d'ordre supérieur dans les réseaux cérébraux en utilisant des complexes simpliciaux et la théorie de l'information, en analysant les données de l'IRMf, des séries chronologiques financières et des maladies infectieuses.