Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.
Explore les propriétés et les exemples de matrices diagonalisables, en mettant l'accent sur la relation entre les vecteurs propres et les valeurs propres.