Explore les limites et les limites dans les catégories de functeurs, en mettant l'accent sur les égaliseurs, les retraits et leur importance dans la théorie des catégories.
Couvre les concepts de limites et de colimits dans la catégorie des espaces topologiques, en mettant l'accent sur la relation entre la colimit et les constructions limites et les adjonctions.
Explore des exemples d'algèbres homotopiques et des adjonctions, en se concentrant sur les articulations gauche et droite dans les functeurs de groupe et les coproduits.
Explore le concept de (co)limites dans l'algèbre homotopique, en discutant des relations entre les functeurs, des cas particuliers, et les propriétés universelles des colimites et des limites.
Couvre l'adjonction entre les ensembles simpliciaux et les catégories enrichies en simpliciation, y compris la préservation des inclusions et la construction des catégories homotopiques.