Couvre la résolution des équations différentielles inhomogènes linéaires et la recherche de leurs solutions générales en utilisant la méthode de variation des constantes.
Discute des équations différentielles de Bernoulli, de leur contexte historique et des méthodes pour les résoudre, en soulignant l'importance des concepts d'algèbre linéaire dans la compréhension de ces équations.
Couvre la variation de la méthode des constantes pour résoudre les équations différentielles linéaires du premier ordre, détaillant ses étapes et ses implications pour les solutions générales et particulières.
Couvre la résolution d'un problème de Cauchy pour une équation différentielle linéaire de premier ordre, détaillant la construction de sa solution générale et la détermination des conditions initiales.
Discute des méthodes de résolution des équations différentielles linéaires du premier ordre, en se concentrant sur la séparation des variables et la méthode des facteurs dintégration.
Explore les équations différentielles linéaires, y compris les équations linéaires homogènes d'ordre supérieur et les équations à coefficients constants.