Explore le modèle de régression linéaire, les propriétés de l'OLS, les tests d'hypothèse, l'interprétation, les transformations et les considérations pratiques.
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Couvre l'analyse des données bivariées, la corrélation et les techniques de régression, y compris l'interprétation des coefficients et de la géométrie des moindres carrés.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, en explorant ses applications dans la prédiction des résultats comme le poids de naissance et l'analyse des relations entre les variables.
Explore les techniques avancées de modélisation à plusieurs niveaux, y compris l'adaptation de modèles distincts, l'estimation des coefficients et la vérification des résidus pour l'évaluation des modèles.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.