Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.
Explore la fiabilité dans l'automatisation industrielle, couvrant la fiabilité, la sécurité, les caractéristiques des pannes et des exemples de sources de défaillance dans diverses industries.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Explore l'importance de la reproductibilité dans la science des données et présente Renku, une plate-forme pour la gestion de projets axés sur les données.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.