Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Couvre les bases du traitement du langage naturel, des approches traditionnelles aux approches modernes, soulignant les défis et l'importance d'étudier les deux méthodes.
Discute des implications éthiques des systèmes NLP, en mettant l'accent sur les biais, la toxicité et les préoccupations en matière de protection de la vie privée dans les modèles linguistiques.
Explore le mécanisme d'attention dans la traduction automatique, en s'attaquant au problème du goulot d'étranglement et en améliorant considérablement les performances NMT.