Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Introduit des méthodes de regroupement hiérarchique et k-means, en discutant des approches de construction, des fonctions de liaison, de la méthode de Ward, de l'algorithme Lloyd et de k-means++.
Examine les méthodes de regroupement pour la partition des données en classes significatives lorsque l'étiquetage est inconnu, couvrant les moyennes K, les mesures de dissimilarité et le regroupement hiérarchique.
Couvre les techniques de réduction de dimensionnalité, de regroupement et d'estimation de la densité, y compris l'ACP, les moyennes K, le MGM et le décalage moyen.
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.
Introduit la méthode k-means du noyau pour former des grappes non convexes et discute du regroupement par densité pour identifier les régions denses dans les ensembles de données.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.