Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Analyse la descente du gradient sur les réseaux neuraux ReLU à deux couches, en explorant la convergence globale, la régularisation, les biais implicites et l'efficacité statistique.
Plongez dans l'optimisation du deep learning, les défis, les variantes SGD, les points critiques, les réseaux surparamétrés et les méthodes adaptatives.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.