Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore l'échantillonnage d'importance dans les calculs de Monte Carlo, en mettant l'accent sur les changements variables et la sélection de la distribution pour plus d'efficacité.
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.