Couvre la combinatoire de la catégorie simplex et son équivalence aux espaces topologiques, ainsi que le concept de catégories foncteur pour les objets cosimpliciels et simpliciaux.
Se penche sur l'application de l'homologie cellulaire pour calculer les groupes d'homologie et les caractéristiques d'Euler, démontrant ses implications pratiques.
Discute de la façon dont les paires CW satisfont la propriété d'extension d'homotopie par le biais de rétractions et de propriétés d'extension d'homotopie.
Fournit un aperçu des groupes fondamentaux en topologie et de leurs applications, en se concentrant sur le théorème de Seifert-van Kampen et ses implications pour le calcul des groupes fondamentaux.