Explore la théorie de la généralisation dans l'apprentissage automatique, en abordant les défis dans les espaces de dimension supérieure et le compromis entre les biais et les variables.
Couvre le surajustement, la régularisation et la validation croisée dans l'apprentissage des machines, explorant le réglage des courbes polynômes, l'expansion des fonctionnalités, les fonctions du noyau et la sélection des modèles.
Explore limpact de la complexité du modèle sur la qualité de la prédiction à travers le compromis biais-variance, en mettant laccent sur la nécessité déquilibrer le biais et la variance pour une performance optimale.
Explore le compromis entre le biais et la variation dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre le biais et la variance dans les prédictions du modèle.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.