Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute de trois définitions du code de taux dans les neurosciences informatiques, en mettant l'accent sur la moyenne temporelle, les intervalles entre les spikes et le facteur FANO.
Explore la dynamique des populations neuronales, en mettant l'accent sur les réseaux aléatoires et les arguments de terrain moyen pour la connectivité.
Explore l'organisation topographique du cerveau, en mettant l'accent sur les représentations sensorielles et les techniques de neuroimagerie hémodynamique.
Explore l'application de la neuroscience computationnelle en neuroprothèse, en se concentrant sur la prédiction des mouvements de bras prévus en fonction des temps de pointe et de l'importance de l'optimisation systématique des paramètres.
Explore le bruit d'échappement dans la neuroscience computationnelle, couvrant l'intensité stochastique, les intervalles d'intercirculation, les fonctions de vraisemblance, la comparaison des modèles de bruit, et les codes de vitesse par rapport aux codes temporels.
Introduit la cartographie topographique du cerveau, les voies auditives, l'organisation du cortex moteur et le modèle linéaire général pour l'analyse des données IRMf.
Explore de réduire le modèle Hodgkin-Huxley à 2 dimensions en exploitant les similitudes entre les variables et en discutant du modèle d'intégration et de feu non linéaire.