Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Introduit des méthodes itératives pour les équations linéaires, les critères de convergence, le gradient des formes quadratiques et les champs de force classiques dans les systèmes atomistiques complexes.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.
Couvre la méthode des gradients conjugués pour résoudre les systèmes linéaires itérativement avec la convergence quadratique et souligne l'importance de l'indépendance linéaire entre les directions conjuguées.
Explore les méthodes de Richardson pour les solutions de systèmes linéaires itératifs et le contrôle des erreurs dans les systèmes définis positifs symétriques.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.