Couvre le clustering, la classification et le support des principes, des applications et de l'optimisation des machines vectorielles, y compris la classification non linéaire et les effets du noyau gaussien.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.
Explore les produits intelligents et connectés et leur impact transformateur sur les entreprises, couvrant l'intelligence artificielle, l'apprentissage automatique, les modèles prédictifs, les méthodes de prévision et plus encore.