Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris la régression linéaire, les statistiques exploratoires et l'analyse des probabilités.
Couvre l'estimation de la vraisemblance maximale pour estimer les paramètres en maximisant la précision de la prédiction, en démontrant par un exemple simple et en discutant de la validité par le biais de tests d'hypothèses.
Déplacez-vous dans les probabilités, les statistiques, les expériences aléatoires et l'inférence statistique, avec des exemples pratiques et des idées.