Séance de cours

Classification : Introduction

Séances de cours associées (41)
Réseaux neuronaux récurrents : Détection de la langue
Explore la détection des langues à l'aide de réseaux neuronaux récurrents et de concepts d'apprentissage supervisé.
Introduction à l'apprentissage automatique
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.
Aperçu de l'apprentissage supervisé
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Introduction à la classification des images
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Analyse des documents : Modélisation des sujets
Explore l'analyse documentaire, la modélisation thématique et les modèles génériques pour la production de données dans l'apprentissage automatique.
Règles de voisinage les plus près: Partie 2
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Groupement : moyenne en k
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Apprentissage sans supervision : regroupement et réduction de dimensionnalité
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Fondements de l'apprentissage automatique
Couvre des concepts clés et des exemples d'algorithmes et de techniques d'apprentissage automatique.
Fondements de l'apprentissage automatique
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.