Explore la convergence des algorithmes Langevin Monte Carlo dans des taux de croissance et des conditions de douceur différents, mettant l'accent sur une convergence rapide pour une large classe de potentiels.
Couvre le théorème du point fixe et la convergence de la méthode de Newton, en soulignant l'importance du choix de la fonction et du comportement de la dérivée pour une itération réussie.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.