Explore l'approche du processus de Poisson dans l'analyse des valeurs extrêmes, en mettant l'accent sur les transformations par composante et les fonctions de probabilité pour les événements extrêmes.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Explore les familles exponentielles, les distributions de Bernoulli, l'estimation des paramètres et les distributions d'entropie maximale dans la modélisation statistique.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.