Analyse des composantes principales : réduction des dimensions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explorer l'estimation du rétrécissement des matrices de covariance à haute dimension, en comparant les approches linéaires et non linéaires pour une meilleure précision.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.
Explore la réduction des dimensions linéaires grâce à la PCA, à la maximisation de la variance et à des applications réelles telles que l'analyse des données médicales.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Couvre les concepts clés de l'APC, y compris la réduction de la dimensionnalité des données et des fonctions d'extraction, avec des exercices pratiques.
Couvre l'analyse des composantes principales pour l'estimation de la forme de la courbe de rendement et la réduction des dimensions dans les modèles de taux d'intérêt.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.