Passer au contenu principal
Graph
Search
fr
|
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Algèbre linéaire: Notes de cours
Graph Chatbot
Séances de cours associées (25)
Précédent
Page 2 sur 3
Suivant
Bases de la cartographie linéaire
Couvre les bases de la cartographie linéaire et des systèmes de coordonnées.
Applications linéaires et spand
Introduit des applications linéaires, la portée, les noyaux et les images dans des espaces vectoriels avec des exemples et des théorèmes illustratifs.
Indépendance linéaire et bases dans les espaces vectoriaux
Explique l'indépendance linéaire, les bases et la dimension dans les espaces vectoriels, y compris l'importance de l'ordre des vecteurs dans une base.
Applications linéaires : Définitions et propriétés
Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.
Orthogonalité et projection
Couvre l'orthogonalité, les produits scalaires, les bases orthogonales et la projection vectorielle en détail.
Algèbre linéaire: opérations matricielles et bases
Explore les opérations matricielles, la détermination des rangs, les dimensions du noyau et les concepts de base en algèbre linéaire.
Opérations matricielles : Systèmes linéaires et solutions
Explore les opérations matricielles, les systèmes linéaires, les solutions et la portée des vecteurs en algèbre linéaire.
Espaces vectoriaux : définitions et exemples
Couvre la définition et les exemples d'espaces vectoriels, y compris les sous-espaces et les transformations linéaires.
Espaces vectoriaux: Bases et dimension
Explore les bases, les dimensions et les matrices dans les espaces vectoriels avec des exemples pratiques et des preuves.
Espaces vectoriaux et applications linéaires
Couvre les espaces vectoriels, les sous-espaces, le noyau, l'image, l'indépendance linéaire et les bases en algèbre linéaire.