Séance de cours

Réseaux neuronaux convolutionnels

Séances de cours associées (152)
Réseaux neuronaux : régression et classification
Explore les réseaux neuronaux pour les tâches de régression et de classification, couvrant la formation, la régularisation et des exemples pratiques.
Réseaux neuronaux multicouches: Deep Learning
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond.
Deep Learning : réseaux neuronaux convolutifs
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Deep Learning: Représentations de données et réseaux neuraux
Couvre les représentations de données, le sac de mots, les histogrammes, le prétraitement des données et les réseaux neuronaux.
Apprentissage supervisé non linéaire
Explore le biais inductif de différentes méthodes d'apprentissage supervisé non linéaires et les défis de l'accordage hyperparamétrique.
Les principes fondamentaux de l'apprentissage profond
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Réseaux neuronaux convolutionnels
Couvre les réseaux neuronaux convolutifs, les opérations de filtrage et leurs applications dans le traitement du signal et l'analyse d'images.
Analyse des documents : Modélisation des sujets
Explore l'analyse documentaire, la modélisation thématique et les modèles génériques pour la production de données dans l'apprentissage automatique.
Réseaux neuronaux : Perceptrons multicouches
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Estimation de la pose à la main
Couvre l'estimation de la pose de la main, les techniques de régression et l'évolution des modèles de classification d'images de LeNet à VGG19.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.