Explore les réseaux neuronaux convolutifs, l'augmentation des données, la dégradation du poids et le décrochage pour améliorer les performances du modèle.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Couvre les bases des réseaux neuronaux convolutionnels, y compris l'optimisation de la formation, la structure des couches et les pièges potentiels des statistiques sommaires.