Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le Dropout en tant que méthode de régularisation dans les réseaux neuronaux profonds, en mettant l'accent sur sa mise en œuvre pratique et son efficacité.
Explore l'évolution des CNN dans le traitement de l'image, couvrant les réseaux neuronaux classiques et profonds, les algorithmes d'entraînement, la rétropropagation, les étapes non linéaires, les fonctions de perte et les frameworks logiciels.
Plonge dans les filtres convolutifs comme un biais inductif pour les images dans les réseaux neuronaux, en mettant l'accent sur l'indépendance de la traduction et des détecteurs de caractéristiques locales.
Explore l'évolution des techniques de reconstruction de l'image médicale, des méthodes classiques aux approches fondées sur les données à l'aide de réseaux neuronaux profonds.
Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Explore l'intelligence, la perception et les applications de l'IA dans les véhicules autonomes, en mettant l'accent sur la pensée rationnelle et l'intelligence sociale.