Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans le compromis entre la complexité du modèle et le risque, les limites de généralisation, et les dangers d'un ajustement excessif des classes de fonctions complexes.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Explore les réseaux neuronaux convolutifs pour la segmentation sémantique, discutant des modèles de classification des pixels, du décodage appris et de l'importance des connexions par saut.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.
Déplacez-vous dans la recherche graphique, les réseaux neuronaux et l'apprentissage profond, couvrant des sujets tels que les réseaux neuronaux convolutionnels et les réseaux neuronaux artificiels.
Explore l'analyse et la classification de la texture dans les images, en mettant l'accent sur le rôle des techniques d'apprentissage automatique telles que les réseaux neuronaux convolutifs.