Explore l'apprentissage par renforcement profond basé sur des modèles, en se concentrant sur Monte Carlo Tree Search et ses applications dans les stratégies de jeu et les processus décisionnels.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Explore le passage à l'apprentissage par renforcement profond à travers les réseaux neuronaux pour l'apprentissage direct des politiques, en contournant les valeurs Q et V.
Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Couvre MuZero, un modèle qui apprend à prédire les récompenses et les actions de manière itérative, réalisant des performances de pointe dans les jeux de société et les jeux vidéo Atari.