Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Discute des méthodes d'apprentissage par renforcement profond, en se concentrant sur les mini-batchs et les implications des techniques de formation on-policy et off-policy.
Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Fournit une vue d'ensemble de l'apprentissage par renforcement, en se concentrant sur le gradient de politique et les méthodes critiques des acteurs pour les réseaux de neurones artificiels profonds.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.