Comparer l'apprentissage automatique avec les modèles traditionnels de modélisation du risque de crédit, en mettant l'accent sur les relations non linéaires et les améliorations prédictives.
Introduit un cours sur l'apprentissage automatique des données comportementales à l'EPFL, couvrant les algorithmes ML, le traitement des données et l'évaluation des modèles.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.