Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Explore l'information mutuelle, quantifiant les relations entre les variables aléatoires et mesurant le gain d'information et la dépendance statistique.
Sur l'entropie et l'information mutuelle explore la quantification de l'information dans la science des données au moyen de distributions de probabilités.
Explore l'information mutuelle dans les données biologiques, en mettant l'accent sur son rôle dans la quantification de la dépendance statistique et l'analyse des séquences protéiques.