Couvre la résolution des équations différentielles inhomogènes linéaires et la recherche de leurs solutions générales en utilisant la méthode de variation des constantes.
Discute des équations différentielles de Bernoulli, de leur contexte historique et des méthodes pour les résoudre, en soulignant l'importance des concepts d'algèbre linéaire dans la compréhension de ces équations.
Couvre le problème de Cauchy dans les équations différentielles, en se concentrant sur les conditions initiales et leur impact sur lunicité de la solution.
Discute de la transformée de Fourier et de son application à la résolution d'équations différentielles, en se concentrant sur l'équation d'onde et ses transformations.
Couvre les principes fondamentaux des équations différentielles, leurs propriétés et les méthodes pour trouver des solutions à travers divers exemples.
Fournit un aperçu des équations différentielles, de leurs propriétés et des méthodes pour trouver des solutions à travers divers exemples et représentations graphiques.
Couvre la résolution d'un problème de Cauchy pour une équation différentielle linéaire de premier ordre, détaillant la construction de sa solution générale et la détermination des conditions initiales.