Couvre le traitement graphique en mettant l'accent sur Oracle Labs PGX, en discutant de l'analyse graphique, des bases de données, des algorithmes et des défis analytiques distribués.
Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore l'analyse statistique des données du réseau, qui couvre les structures graphiques, les modèles, les statistiques et les méthodes d'échantillonnage.
Explore l'appariement des patrons de mise à l'échelle dans les grands graphiques et optimise l'exécution des requêtes sous des contraintes de mémoire en utilisant le partage de travail et le traitement par lots.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Se penche sur l'apprentissage automatique amélioré par les graphiques, en mettant l'accent sur la détection des fraudes, la détection des logiciels malveillants et les systèmes de recommandation.