Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Explore l'utilisation de l'esthétique, des métaphores visuelles, de la lisibilité et de l'intégrité des données pour créer des représentations visuelles efficaces.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Se penche sur la physialisation des données, l'expressivité, la visualisation féministe et l'équilibre entre l'exploration et l'explication de la visualisation des données.
Explore les racines du design depuis la Renaissance et son évolution au sein des révolutions industrielles, en mettant l'accent sur différentes approches du design et l'esthétique des données.
Explore les principes de visualisation des données, y compris la navigation des cartes, les histogrammes, les diagrammes de dispersion, les diagrammes de boîte et l'utilisation des couleurs.