Séance de cours

Fondements de l'apprentissage automatique

Séances de cours associées (168)
Régression linéaire: Introduction et formation
Couvre la formation de régression linéaire pour trouver la meilleure ligne pour des points de données donnés, essentielle pour prédire les prix des maisons.
Analyse des documents : Modélisation des sujets
Explore l'analyse documentaire, la modélisation thématique et les modèles génériques pour la production de données dans l'apprentissage automatique.
Fondements de l'apprentissage automatique
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Modèles Vision-Langue-Action : Formation et applications
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Introduction à l'apprentissage automatique
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression linéaire et la classification.
Introduction à l'apprentissage automatique : apprentissage supervisé
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Représentation des données : PCA
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Bases de l'apprentissage automatique
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Introduction à l'apprentissage automatique
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.
Apprentissage sans supervision : regroupement et réduction de dimensionnalité
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.