Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Introduit le cours sur le traitement du langage naturel moderne, couvrant son importance, ses applications, ses défis et les progrès de la technologie.