Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Couvre le processus d'étalonnage et d'analyse des données pour les mesures ConsO2, y compris la sélection des fichiers d'entrée et l'interprétation des données.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Introduit une analyse de régression, couvrant les modèles linéaires et non linéaires, la régression de Poisson et l'analyse du temps de défaillance à l'aide de divers ensembles de données.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.