vignette|upright|Une des premières radiographies, prise par Wilhelm Röntgen. alt=Rayon X des poumons humains|vignette|189x189px|Rayon X des poumons humains. Les rayons X sont une forme de rayonnement électromagnétique à haute fréquence constitué de photons dont l'énergie varie d'une centaine d'eV (électron-volt), à plusieurs MeV. Ce rayonnement a été découvert en 1895 par le physicien allemand Wilhelm Röntgen, qui a reçu pour cela le premier prix Nobel de physique ; il lui donna le nom habituel de l'inconnue en mathématiques, X.
En géométrie algébrique, un morphisme de type fini peut être pensé comme une famille de variétés algébriques paramétrée par un schéma de base. C'est un des types de morphismes les plus couramment étudiés. Soit un morphisme de schémas. On dit que est de type fini si pour tout ouvert affine de , est quasi-compact (i.e. réunion finie d'ouverts affines) et que pour tout ouvert affine contenu dans , le morphisme canonique est de type fini.
In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field (both are named after Wilhelm Killing). It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.
En physique, un état de la matière est une des quatre formes ordinaires que peut prendre toute substance dans la nature : solide, liquide, gaz, plasma. Diverses propriétés de la matière diffèrent selon l'état : degré de cohésion, densité, structure cristalline, indice de réfraction... Ces propriétés se traduisent par des « comportements » différents, décrits par les lois de la physique : malléabilité, ductilité, viscosité, loi des gaz parfaits... vignette|Les différents états de la matière et leur changement d'état.
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper.